中文版 |  English

HOME
GAM320

ICT

In-Circuit Tester

 Based on the basic function of ICT to increase electricity function extension.

 ICT standard double probe structure and the function of the independent testing, can amount to 5200 test points.
 Up to 250 VAC (RMS) rectifier capacity.
 Dc source, is XuanBo and square-wave, power, digital signal.
 Can measure AC/DC voltage, impedance, frequency and cycle.
 Processing circuit board size 24 x 13.2 inches (61 x 33.5 cm)

  • ICT

DescriptionFeaturesSpecifications

Combined with ICT and function test, provides the high failure rate test on a low cost platform, custom all kinds of test requirements by the customer.

•Standard, dual level probing for ICT and isolated low-voltage functional tests with up to 5200¹ Test Point Capability

•Handles circuit boards up to 24 x 13.2 inches (61 x 33.5 cm)

•TestJet Technology*, MultiWriter part programming, and Boundary-scan options

•Ergonomically friendly slide-in fixtures, straight-in and out, top and bottom lock-in for safety

•Compatible² with KIT2KN-QC and KIT1000-QC Fixture Kits

•Operator safety light curtain

•Fully Integrated CheckSum Test System Software Environment


Low-Cost In Circuit Test Overview

The Analyst ems Low-Cost In Circuit Test (ICT) System provides the capability to quickly and easily test assemblies for common manufacturing defects such as incorrect, missing or misoriented components, and opens and shorts. These faults comprise the vast majority of problems encountered in the typical manufacturing flow. ICT systems can quickly and accurately measure continuity, capacitors, resistors, inductors, voltages, semiconductor junction voltages, and SMT connections for opens. With these basic tools, ICTs can find most faults in analog or digital assemblies before board power-up. 

The CheckSum Analyst ems is designed for testing all types of circuit assemblies. The System combines manufacturing process testing with TestJet Technology to test a single assembly or a panel of multiple assemblies.

The Analyst ems tests the entire unit-under-test (UUT) and individual components without power applied. Using sophisticated measurement techniques such as DC or complex-impedance measurements in conjunction with multi-point guarding, it provides the capability to find the majority of faults such as shorts, opens and wrong or incorrectly installed components. By finding the majority of faults while the UUT is in the safe unpowered mode, and with very specific fault diagnostic messages, faulty UUTs can be repaired quickly.

The Analyst ems is designed to be used for most common through-hole and SMT circuit assemblies. It can perform effective power-down testing for most analog or digital assemblies being manufactured today. The optional power-up functional test capability is ideally suited for lower frequency analog assemblies with some digital content.

Download Analyst ems data sheet and specifications   

Download the Analyst ems manual   

Operating the Test System

The standard Analyst ems is provided with a stand-alone long-travel pneumatic fixture press built into a rack-cabinet. This unit can be installed on the factory floor, and is ready for use once connected to standard compressed air and an AC outlet. The standard configuration is complete for most testing operations. It requires only one load/unload cycle per test, with no lids or doors for the operator to manipulate between tests.

CheckSum can ship the system to you complete with a ready-to-use test fixture and test program for one or more UUTs. CheckSum's fixturing division can provide all of the fixturing and programming requirements; or you can modify or add UUTs yourself or with the use of third-parties.

To configure the system for testing, easily removable, cable-less fixture kits are installed without the need for tools. Fixture change-over takes only a few seconds.

To run a test, the operator places the UUT on the fixture's guide pins, then presses the start test buttons. Once the test is completed, the system displays the results and the fixture top automatically rises so the UUT can be removed. The system can be configured to automatically produce a test report, or can be setup so that results are saved for statistical analysis (SPC) with included software.

System Capabilities

Power-Down Test Capabilities

For component in circuit testing, the System provides effective tools to find most faults. These measurements are made with signal injection/measurement, but without the UUT powered on. Measurements are taken at high speeds using a solid-state multiplexing system. Most complete tests are under ten seconds.

Opens/Shorts

The System can test from each point to each other point to detect faults. Open/short thresholds are typically in the 10 range, but can be programmed over the range of 2 to 50K. Continuity tests can use either 10mA, 1mA or 100µA source current. Specified pairs of points can be designated as "no-cares" to allow the most effective diagnostics or to deal with points that are near threshold values.

Resistance Measurements

The System provides the ability to measure from 0 up to 19M using various techniques to optimize the measurement effectiveness. You can choose between using a constant-current source (0.1µA to 10mA), a DC constant-voltage source (.02V to 2V full range), or AC complex-impedance measurements over the range of 100Hz - 1KHz. Resistance tests can be used with external sense (4-wire Kelvin measurements), and in conjunction with multi-point guarding to isolate individual components. Guard currents up to 100mA are available. Up to 16 distinct measurement and stimulus functions can be active during a single measurement.

Capacitance Measurements

The System provides the ability to measure from a few pF up to 20,000µF. You can choose between using a constant-current pulsed source (1mA to 10mA), or AC complex-impedance measurements over the range of 100Hz – 100KHz. Capacitance tests can be used with external sense (4-wire Kelvin measurements), and in conjunction with multi-point guarding to isolate individual components. Guard currents up to 100mA are available. Up to 16 distinct measurement and stimulus functions can be active during a single measurement.

Inductance Measurements

The System provides the ability to measure from a few µH up to 1000H. Measurements are made by using complex-impedance measurements with stimulus frequencies between 100Hz and 100KHz and full-range amplitudes of .02V to 2V. Inductance tests can be used with external sense (4-wire Kelvin measurements), and in conjunction with multi-point guarding to isolate individual components. Guard currents up to 100mA are available. Up to 16 distinct measurement and stimulus functions can be active during a single measurement.

Voltage Measurements

For UUTs that have batteries, DC amplitudes up to 10 volts can be measured. Fully differential measurements can be made up to ±8V from chassis ground.

Transistors

Transistors can be tested as two diode junctions, or tested for Beta while in circuit. The Beta test can help determine proper insertion polarity for transistors that can be installed backwards, but with the base still in the middle. This type of fault cannot typically be detected with diode testing of the junctions.

FETs

FETs can be tested for turn-on voltage. By sweeping a voltage into the gate while monitoring the Source/Drain impedance, the FET can be checked for proper orientation and operation.

Opto-Isolators

Opto-isolators can be tested by sourcing into the input leads while measuring the output impedance. By testing each device in the on and off state, high confidence is obtained.

Relays

Up to 24V with up to 100mA can be used to actuate relay coils. This allows testing of contacts in each state to ensure that the contacts are not shorted, and that the coil is operational.

Diodes

Diodes are tested by providing a constant current source (0.1µA to 100mA), then measuring the forward voltage drop, which is typically in the 0.6V to 0.8V range. This test ensures that the diode is installed, is in the proper orientation, and is not open or shorted.

Zener Diodes

Zeners are tested by providing a constant current source (0.1µA to 100mA), then measuring the forward voltage drop. Measurements up to 50V can be performed. This test ensures that the zener diode is installed, is in the proper orientation, and is not open or shorted. Zeners that cannot be brought to their full voltage due to current or voltage limiting can be tested as normal diodes or in some cases can be tested during the power-up stage.

LEDs

LEDs are tested like signal diodes, but normally have higher forward voltage drop. Special light-sensing probes can be added to customized test fixtures to detect brightness and color of LEDs and incandescent lamps.

Transformers

Transformers are typically tested for dc resistance of each coil to detect presence. Coils can also be tested for inductance, and a polarity test can be used to ensure that each coil is wired correctly. This can detect faults inherent to hand-loading of transformers with wire leads.

IC Presence/Orientation

IC's are tested by using the ICs test. This test measures each IC pin to specified pins such as VCC, VSS or VDD, checking for the presence of the IC's internal protection diodes. This test detects most faults such as shorted pins, open pins or mis-clocked or wrong ICs. In some cases, faults may not be detected if the IC pins are bussed or devices of similar pin-topology are interchanged.

IC Pin Connections

With the use of TestJet Technology, the System can detect opens to IC pins, even though the pin is bussed to other ICs. This advanced technology (licensed to CheckSum by Agilent), uses a sophisticated software/hardware algorithm to measure the minute capacitance between the PCB and the IC for each pin. If a pin is open, the capacitance significantly decreases. This technology can be used for most non-power and ground lines on the ICs and on many connectors to ensure proper connection and/or connector presence.

Capacitor Polarity based on TestJet Technology 

In some cases, constant-current and voltage measurements of a polarized capacitor can be used to detect incorrect polarity since the capacitor draws additional current as the voltage increases in the incorrect polarity. As a practical matter, this technique cannot be used in many cases during in circuit testing because of voltage or parallel impedance limitations. In this case, the SMT option can be used to detect the polarity of most axial/SMT aluminum and tantalum capacitors up to about 200µF.

Autoprogram and Test

To test UUTs without programming, CheckSum offers the `Autoprogram' algorithm. This allows you to place a known-good UUT on the test fixture for the System to self-program itself. Other boards can then be tested to find differences that may be indicative of faults. Detected properties include open/shorts, resistance, capacitance and diode junction presence. While this algorithm does not provide the detailed diagnostic messages of a fully-programmed UUT, it can help get boards up on the System quickly for use while programming, or as a complete test on prototype or short runs.

The Analyst ems system includes a power module that can be used to provide higher current outputs from the system. These higher current outputs can be used to actuate UUT relays, power-up low power UUTs, provide additional guard current, or apply stimulus for power-up testing. The module has dual voltage-programmable high current outputs that can be set from +12V to -12V (up to 24V differential). For switching these outputs to the UUT, 16 relay test point outputs are provided. Voltage and current output can be monitored. Fixed switched supplies provide +12V, +5V and -12V at the back panel. These outputs can be switched on or off via on-board relays. The outputs are fused for protection of the system and UUT. Eight additional digital pins can be used for digital input/output or to energize external relays.

PS-UUT-L1 Power Supply

The Analyst ems system includes a programmable power supply that can be used to power-up the UUT for functional test or ISP:

Programmable supply, 0 to 60 Vdc, up to 12.5A, remote sense and output enable.

Accuracy:

  Voltage Output: 0.05% of Vout + 30mV

  Current Output > 50mA to 12.5A: 0.10% of Iout + 25mA

  Current Output < 50mA: 0.10% of Iout + 50mA

Additional optional power supplies can be added to the system.

Digital I/O Option

The Analyst ems can be configured with an optional 48 or 96 digital I/O pins. These pins can be relay-connected to the UUT in byte increments. Within each byte, each pin can be set to be an input (tri-state output) or an output. Since each pin has a 10K pull-up (in conjunction with totem-pole outputs), it is compatible with most logic families. VCC for output can be selected to be +5V or +3.3V.

Boundary-Scan Option

The Analyst ems can be configured with the optional Boundary-Scan Test. This allows the System to be used with UUTs that have been designed to accommodate boundary-scan, or have on-board devices that support boundary-scan. In addition, boundary scan can be used by some programmable devices to perform in-system programming and program verification.

Click here to see an overview of boundary-scan.

Click here to see a list of our boundary-scan partners and their test tools.

MultiWriter ISP Device Programming 

The Analyst ems can be equipped with the MultiWriter ISP programming and verification capability to simultaneously program up to 384 ISP devices in circuit.

Click here to see an overview of MultiWriter

Click here to review the MultiWriter data sheet  

Other System I/O

In addition to the power/stimulus/measurement capabilities already mentioned, the System has a number of other functions available. These include 8 bits of Digital I/O / Relay drivers (PWR-2) and 2 Switched grounds (PWR-2)

System Switching Topology

The Analyst ems offers a flexible switching topology to minimize custom circuitry and to allow assemblies to be easily programmed.

The system uses an N x 16 solid-state analog bus (where N = 200 up to 5,200) that allows each test point to be a measure source high, measure source low, measure sense high, measure sense low, guard source, guard sense, or DC/AC signal source. The solid-state matrix provides high-speed and reliability for power-down testing, or for functional testing of points that do not exceed ±12V referenced to the computer chassis.

A 16 x 2 relay matrix is also included for signals in excess of 10mA, or for voltages greater than ±12Vdc (e.g., Zener measurements).

Digital test points are available at the fixture interface blocks. They can be relay-disconnected during power-down test, then enabled (by byte) during power-up test.

Power outputs are available at the fixture interface blocks. They can be relay disconnected during power-down test. This includes the ground signals so that the UUT is fully floating.



about us
ABOUT NSDTECH
CULTURE
ENTERPRISE QUALIFICATION
COMPANY DYNAMICS
TALENT RECRUITMENT PLAN
PRODUCT
AOI
SPI
X-RAY
ICT
FPT
分板机
BATTERY&CELL TEST EQUIPMENT
CLEANING EQUIPMENT
FAI
SERVICE & ACCESSERIES
support center
SOLUTION
SERVICES
Sitemap
contact us

SHENZHEN NSD TECHNOLOGY CO.,LTD


TEL:     +86(755)2376 0779

FAX:     +86(755)2376 0779

E-MAIL: SALES@NSDCORP.CN

ADD:     2F,QIAN YUTONG BUILDING,QINGJI ROAD,LONGHUA DISTRICT,SHENZHEN CITY,GUANGDONG PROVINCE,PR.CHINA



友情链接:友情链接 友情链接 友情链接 友情链接 友情链接 友情链接 友情链接 友情链接 友情链接 友情链接 友情链接 友情链接